A hierarchical fuzzy classification approach for high-resolution multispectral data over urban areas

نویسندگان

  • Aaron K. Shackelford
  • Curt H. Davis
چکیده

In this paper, we investigate the usefulness of high-resolution multispectral satellite imagery for classification of urban and suburban areas and present a fuzzy logic methodology to improve classification accuracy. Panchromatic and multispectral IKONOS image datasets are analyzed for two urban locations in this study. Both multispectral and pan-sharpened multispectral images are first classified using a traditional maximum-likelihood approach. Maximum-likelihood classification accuracies between 79% to 87% were achieved with significant misclassification error between the spectrally similar Road and Building urban land cover types. A number of different texture measures were investigated, and a length–width contextual measure is developed. These spatial measures were used to increase the discrimination between spectrally similar classes, thereby yielding higher accuracy urban land cover maps. Finally, a hierarchical fuzzy classification approach that makes use of both spectral and spatial information is presented. This technique is shown to increase the discrimination between spectrally similar urban land cover classes and results in classification accuracies that are 8% to 11% larger than those from the traditional maximum-likelihood approach.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A combined fuzzy pixel-based and object-based approach for classification of high-resolution multispectral data over urban areas

In this paper, we present an object-based approach for urban land cover classification from high-resolution multispectral image data that builds upon a pixel-based fuzzy classification approach. This combined pixel/object approach is demonstrated using pan-sharpened multispectral IKONOS imagery from dense urban areas. The fuzzy pixel-based classifier utilizes both spectral and spatial informati...

متن کامل

Object-based Land Cover Classification of Urban Areas Using Vhr Imagery and Photogrammetrically-derived Dsm

Object-based image analysis is becoming increasingly popular in classification of very high resolution (VHR) imagery over urban areas. The spectral resolution of VHR imagery (generally they possesses 1 pan and 4 multispectral bands), however, is limited and insufficient for differentiating many urban land cover classes. Due to the spectral similarity of building roofs, roads and parking lots, s...

متن کامل

Investigating Urban Railway Corridors with Geometric High Resolution Satellite Data

Accurate analyses concerning the ecological value of urban railway sites are required to ensure a sustainable development of inner urban open space. One problem in this context is the great heterogeneity of such areas. New opportunities to investigate heterogeneous urban areas arose with the advent of geometric very high resolution (VHR) satellite data. A bundle of panchromatic and multispectra...

متن کامل

Object-oriented Image Classification for Urban Building Boundary Extraction from Ikonos Imagery

Detailed mapping of rooftops in urban environments requires high spatial resolution remotely sensed data. However, traditional pixel-based classifiers based on spectral classes are ineffective in high-resolution multispectral images due to large within-class spectral variations and between-class spectral confusions that characterize manmade features. In this study, a rule-based object-oriented ...

متن کامل

Multilevel Object Based Image Classification over Urban Area Based Hierarchical Image Segmentation and Invariant Moments

With the availability of very high resolution multispectral imagery from sensors such as IKONOS and Quickbird, it is possible to identify small-scale features in urban environment. Because of the multiscale feature and diverse composition of land cover types found within the urban environment, the production of accurate urban land cover maps from high resolution satellite imagery is a difficult...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IEEE Trans. Geoscience and Remote Sensing

دوره 41  شماره 

صفحات  -

تاریخ انتشار 2003